The main ambitions of Solve-RD are (i) to solve large numbers of rare disease (RD), for which a molecular cause is not known yet, by sophisticated combined Omics approaches, and (ii) to improve diagnostics of RD patients through contribution to, participation in and implementation of a “genetic knowledge web” which is based on shared knowledge about genes, genomic variants and phenotypes. Solve-RD will pursue a clear visionary and integrated “beyond the exome” approach and will demonstrate strategies to identify disease causes in unsolved genetic RD patients as currently about 50% of all RD causes remain unclear.

Through its integrated approach focusing on identifying disease-causing mutations in patients who received WES with a negative or an inconclusive molecular diagnosis, Solve-RD will significantly increase the diagnostic yield from 50% to >70% by developing novel strategies using novel molecular approaches.

- EU-funding: 15 Mio. EUR under Horizon 2020
- Project duration: five years (1.1.2018 - 31.12.2022)
- Involves 4 European Reference Networks (ERNs) - the core ERNs: ERN-RND, ERN-EURO-NMD, ERN-ITACA, ERN-GENTURIS
- Consortium comprises 21 partner from 10 countries:
 - Leading clinicians, geneticists and translational researchers of 4 core ERNs
 - RD research and diagnostic infrastructures (RD-Connect, Orphanet/ORDO, Human Phenotype Ontology [HPO], EuroGentest)
 - Patient organisations (EURORDIS, GenAttract Alliance)
 - Leading experts in the field of ‘omics technologies, bioinformatics and knowledge management

Key Deliverables

- Novel disease causing genes
- Novel validated disease causing genes will be transferred to routine diagnostics
- Novel diagnostic approaches
- Applied in Solve-RD cohorts and scrutinised for clinical utility in Solve-RD
- Ontology of unsolved rare diseases
- Ontology sustainable and ready for uptake of further unsolved RD
- Collection of phenotypic and genomic data from unsolved patients
- High quality FAIR quality data sustainably stored at RD-Connect and EGA
- Evidence based methodology to communicate (gen)omics results
- Methodology has been approved by a few ERNs and will need to be adapted by further ERNs
- Trial-ready cohorts in registries and biobanks
- Registries and biobanks are existing and will need to be exploited for trial design

Implementation Steps

1. **STEP 1**
 - Adapt tools for ‘omics-based collection of phenotypes of unsolved RD cases
 - Standardised methodology to communicate (gen)omics test results to patients in an evidence-based manner
 - Communication of (gen)omics test results in a diagnostics setting

2. **STEP 2**
 - Create an ontology of unsolved RD cases
 - Utilise novel algorithms to compare phenotypes from unsolved RD with phenotypes from solved RD and RD models
 - Implement Solve-RD Models
 - “beyond the exome” approaches
 - Standardised collation of data and re-analysis with state-of-the art variant calling pipeline
 - “Unsolvables” approach

3. **STEP 3**
 - Definition: Unsolvable RD cases with an inconclusive exome
 - Numbers: at least 19,000 cases from ERNs and beyond
 - Main activity: standardisation of data and re-analysis with state-of-the art variant calling pipeline
 - Expected diagnostic efficiency: 3.5% of all cases

4. **STEP 4**
 - Definition: Disease groups specific cohorts from four core ERNs
 - Numbers: 2,000 cases WGS to achieve a more complete (non-)coding sequence, structural variants (SVs) etc.; 500 cases long-read WGS; 750 cases deep WES; 800 cases short-read and 80 cases long-read transcriptomics
 - ‘Unsolvables’ approach: ‘beyond the exome’ approaches
 - Expected diagnostic efficiency: 20-30% of all cases. 10% by moving from WES to WGS, 10-20% by adding transcriptomics, and at least 10% estimate by other omics technologies and moving to long read WGS.

5. **STEP 5**
 - Definition: Ultra-rare RD cases
 - Numbers: 800 cases
 - Main activity: Novel disease causing genes
 - Expected diagnostic efficiency: 50% of all cases; high yield due to exquisite phenotype selection

6. **STEP 6**
 - Definition: The Unsolvable RD cases
 - Numbers: At least 120 cases
 - Main activity: Combination of all available omics tools to ‘crack’ the „Unsolvable“
 - Expected diagnostic efficiency: see cohort 2

Challenges

1. **Challenge 1**
 - Accessibility of unsolved RD cohorts with comprehensive genetic and phenotypic data
 - WP1

2. **Challenge 2**
 - New and improved approaches for the discovery of novel molecular causes
 - WP2

3. **Challenge 3**
 - Translate discoveries to impacting clinical practice
 - WP3

Partners

<table>
<thead>
<tr>
<th>No.</th>
<th>Partners</th>
<th>City, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Antwerp, Institute of Biomedical Sciences and Department of Medical Genetics</td>
<td>Antwerp, Belgium</td>
</tr>
<tr>
<td>2</td>
<td>Universita degli Studi di Ferrara, Institute of Neurology and Institute of Child Health</td>
<td>Ferrara, Italy</td>
</tr>
<tr>
<td>3</td>
<td>University of Manchester, Centre for Genomic Medicine</td>
<td>Manchester, United Kingdom</td>
</tr>
<tr>
<td>4</td>
<td>University of Maastricht, Institute of Neurology and Institute of Child Health</td>
<td>Maastricht, Netherlands</td>
</tr>
<tr>
<td>5</td>
<td>Institute for Medical Genomics and Personalized Medicine</td>
<td>Groningen, Netherlands</td>
</tr>
<tr>
<td>6</td>
<td>Università degli Studi di Roma 'La Sapienza'</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>7</td>
<td>The James Hutton Institute, Edinburgh</td>
<td>Edinburgh, United Kingdom</td>
</tr>
<tr>
<td>8</td>
<td>King’s College London</td>
<td>London, United Kingdom</td>
</tr>
<tr>
<td>9</td>
<td>University of Cambridge, Cambridge Institute of Medical Research, and Institute of Child Health</td>
<td>Cambridge, United Kingdom</td>
</tr>
<tr>
<td>10</td>
<td>Université Toulouse III Paul Sabatier, UFR de Médecine, Hôpital Trousseau</td>
<td>Toulouse, France</td>
</tr>
<tr>
<td>11</td>
<td>University degli Studi di Firenze, Università degli Studi di Firenze</td>
<td>Florence, Italy</td>
</tr>
<tr>
<td>12</td>
<td>University of Milan, IRCCS Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico</td>
<td>Milan, Italy</td>
</tr>
<tr>
<td>13</td>
<td>Universitat de Barcelona, Hospital Clinic</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>14</td>
<td>CRG Barcelona, Centre for Genomic Regulation</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>15</td>
<td>Università degli Studi di Bologna, Università degli Studi di Bologna</td>
<td>Bologna, Italy</td>
</tr>
<tr>
<td>16</td>
<td>Università degli Studi di Verona, Università degli Studi di Verona</td>
<td>Verona, Italy</td>
</tr>
<tr>
<td>17</td>
<td>Università degli Studi di Firenze, Università degli Studi di Firenze</td>
<td>Florence, Italy</td>
</tr>
<tr>
<td>18</td>
<td>Universitätsklinikum Hamburg-Eppendorf</td>
<td>Hamburg, Germany</td>
</tr>
<tr>
<td>19</td>
<td>Universiteit Maastricht, Department of Medical Genetics</td>
<td>Maastricht, Netherlands</td>
</tr>
<tr>
<td>20</td>
<td>Université de Liège, Centre Hospitalier Universitaire de Liège</td>
<td>Liège, Belgium</td>
</tr>
<tr>
<td>21</td>
<td>Charité - Universitätsmedizin Berlin</td>
<td>Berlin, Germany</td>
</tr>
</tbody>
</table>